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Nitrite anion (NO2
-) is considered as a major intravascular nitric

oxide (NO) storage pool.1 Recently, in a mammalian system,
Gladwin et al. demonstrated that infusion of nitrite into an artery
can induce vasodilation even when NO synthase is inhibited.2 It is
therefore conceivable that NO2

- can be transformed into NO by
deoxyhemoglobin (deoxyHb) under hypoxic conditions. In bacteria,
NO2

- is reduced to NO by heme-containing nitrite reductases
(NiRs), e.g., cytochrome cd1 NiR from Paracoccus pantotrophus,3

cytochrome c NiR from Wolinella succinogenes,4 and sulfite
reductase from E. coli,5 etc. Most recently, a literature report
provided structural evidence of an O-bound nitrite on the heme
center of human hemoglobin.6 Meanwhile, mechanistic studies
carried out by Estrin et al. indicate that protonation on N-bound
NO2

- facilitates the nitrite reduction to a labile Fe(III)-NO species
and the release of a water molecule. Alternatively, O-bound NO2

-

generates a hydroxo-ferric porphyrin complex and molecular NO
via protonation on the coordinating oxygen atom.7 Evidently, in
both N- and O-bound reaction mechanisms, deliverable proton(s)
and oxidation of iron are essential characteristics in deciphering
the mechanism of nitrite reduction.

Despite the vast number of studies, thus far only the electro-
chemistry8 and oxygen acceptor assisting nitrite reduction9-11 have
been documented. To the best of our knowledge, there is no report
on a ferrous porphyrin complex that can biomimetically convert
NO2

- to form an {Fe(NO)}6 nitrosyl species. To model the
reduction of nitrite anion, the unique properties of altering the

tautomer form of the porphyrin skeleton12 and simultaneously
serving as a one- or two-proton donor within [Fe(HCTPPH)Br]13

are utilized; herein we report a facile nitrite reduction by [Fe(H-
CTPPH)Br] without the presence of a reductant or an oxygen
acceptor (Scheme 1). It is noteworthy that, by controlling the
stoichiometry of nitrite, either [Fe(CTPP)NO] ({Fe(NO)}6) or
[Fe(HCTPP)NO] ({Fe(NO)}7) can be obtained. Also, [Fe(HCTP-
P)NO][ClO4] was isolated as an intermediate between the conver-
sion process of [Fe(CTPP)NO] and [Fe(HCTPP)NO], demonstrating
that protonation on the peripheral nitrogen of N-confused porphyrin
can tune the electronic structure of the Fe-NO moiety.

In this study, we find that reaction of FeII(HCTPPH)Br with 1
equiv of NaNO2 under an inert atmosphere at ambient temperature
results in [Fe(CTPP)NO] (Scheme 1a). The UV-vis spectrum,
shown in Figure 1, exhibits absorption maxima at 392, 435, and
515 nm for [Fe(CTPP)NO]. Notably, [Fe(CTPP)NO], which is
isolated in 97% yield, is an air-stable compound and can be further
purified by means of silica gel column chromatography in a room
atmosphere. The FT-IR spectrum of this product gives a ν(NO) at
1771 cm-1, and the crystallographic analysis (Figure 2) reveals an
Fe-N-O angle of 180° and a N-O distance of 1.128(10) Å, which
are consistent with the {Fe(NO)}6 electronic structure according
to the Enemark-Feltham notation.14 Furthermore, the EPR silent
characteristic, the 1H NMR spectrum with six sets of doublet
resonances between 8.30 and 8.10 ppm for �-pyrrolic protons, and
the singlet at 9.50 ppm for the proton alongside the outer nitrogen
explicitly confirm the {Fe(NO)}6 electronic structure. Although
further spectroscopic information is required, the observation of a
resonance at -19.92 ppm (vs MeNO2) for NO in the 15N NMR
spectrum using isotopically enriched [Fe(CTPP)(15NO)] in CDCl3
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Scheme 1 a

a (a) 1 equiv of NaNO2; (b) 0.5 equiv of [PPN(NO2)]; (c) HClO4; (d)
Co(Cp)2; (e) air; (c′) NEt3; (d′) AgClO4; (e′) PhSH.

Figure 1. Absorption spectra of iron N-confused porphyrin nitrosyl
complexes in CH2Cl2. The insert shows changes in the absorption spectrum
over 90 min when 2.5 mL of [Fe(HCTPPH)Br] (2.05 × 10-5 M in CH2Cl2)
was treated with 52 µL of NaNO2 (9.97 × 10-3 M in MeOH).
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suggests that nitrosonium (NO+) is the most likely electronic
configuration present in this NO complex.15

Distinctive differences in chemical reactivity and stability
between regular and N-confused iron-nitrosyl porphyrin complexes
were observed. First, regular iron(III)-nitrosyl porphyrin complexes
have been reported to slowly release NO in the solid state and
rapidly lose NO while in solution; however, [Fe(CTPP)NO] in
solution is stable under atmospheric conditions. Second, instanta-
neous nitrite reduction was observed as long as NO2

- salt was
treated with the solution of [Fe(HCTPPH)Br] at ambient temper-
ature. This is in striking contrast to the observation that nitrite can
stably coordinate to the iron(II) center of a normal porphyrin
complex without evidence of any further reaction.16 This nitrite
reduction carried out by [Fe(HCTPPH)Br] is, in addition, distinc-
tively different from that induced by iron-corrole complexes, which
reduce nitrite to NO from the Fe(IV) oxidation state at elevated
temperature.17 Importantly, for the formation of an iron-nitrosyl
complex, nitrite transformation to NO by a disproportionation
reaction is also a potential mechanism.18 Nevertheless, the quantita-
tive yield of [Fe(CTPP)NO] from nitrite reduction under nonacidic
conditions suggests that the disproportionation reaction is improb-
able. The presence of inner C-H and peripheral N-H protons on
[Fe(HCTPPH)Br], which can be readily transferred to a nitro group
to release molecular water or hydroxide, on the other hand, appears
to play an essential role in the facile nitrite reduction.

To better understand the electron/proton-transfer process during
the nitrite reduction, stoichiometric control of [FeII(HCTPPH)Br]
and nitrite salt was performed. Quantitative yields of {Fe(NO)}7

[Fe(HCTPP)NO] together with an equal equivalent of [FeIII(HCT-
PP)Br] were isolated on treating [FeII(HCTPPH)Br] with 0.5 equiv
of [PPN(NO2)] (PPN: bis(triphenylphosphine)iminium) under an
inert atmosphere (Scheme 1b). As expected, the {Fe(NO)}7

[Fe(HCTPP)NO] is extremely air-sensitive and will be rapidly
oxidized to [Fe(CTPP)NO] when exposed to air. The crystal-
lographic analysis of [Fe(HCTPP)NO] (Figure 2) reveals an angle
of 151.8(6)° for Fe-N-O and a N-O bond distance of 1.171(13)
Å; both are in the range for a {Fe(NO)}7 electronic structure. The
UV-vis spectrum, shown in Figure 1, exhibits absorption maxima
at 423 and 750 nm for [Fe(HCTPP)NO], which is distinctively
different from that of {Fe(NO)}6 [Fe(CTPP)NO]. The ν(NO) of
1640 cm-1 for [Fe(HCTPP)NO] is in agreement with an {Fe(NO)}7

electronic structure. In addition, an isotropic EPR absorption
envelope at 298 K (g ) 2.0289 and aN ) 16.309 G) and broadened
1H NMR resonances between 5.5 and 10.5 ppm for [Fe(HCTP-
P)NO] also imply a paramagnetic {Fe(NO)}7 compound.

By taking advantage of the dual tautomeric forms on the
N-confused porphyrin ring, which alternate during the protonation/
deprotonation process,19 it is possible to study the interconversion
between the {Fe(NO)}6 [Fe(CTPP)NO] and {Fe(NO)}7 [Fe(HCT-
PP)NO]. The protonation on [Fe(CTPP)NO] by HClO4 resulted in
the cationic complex [Fe(HCTPP)NO][ClO4]. The same product

can be prepared by oxidation of [Fe(HCTPP)NO] with AgClO4.
As expected, in the presence of a base, [Fe(HCTPP)NO][ClO4] is
readily converted back to [Fe(CTPP)NO]. Moreover, cobaltocene,
which is a potent reductant, can reduce [Fe(HCTPP)NO]+ back to
[Fe(HCTPP)NO]. The ν(NO) at 1796 cm-1 for [Fe(HCTPP)NO]-
[ClO4] is 25 cm-1 higher in energy than that in [Fe(CTPP)NO],
but it is still in the range of a {Fe(NO)}6 electronic structure. Direct
reduction of {Fe(NO)}6 [Fe(CTPP)NO] to {Fe(NO)}7 [Fe(HCTP-
P)NO] by PhSH along with its backward oxidation reaction by
dioxygen completes a conversion cycle for these three iron-nitrosyl
N-confused porphyrin complexes. The shift of ν(NO) toward higher
energy and the increased bending angle of Fe-N-O from the
crystal structure of [Fe(HCTPP)NO](ClO4) (Figure S10) confirm
that protonation is an effective route to alter the electronic structure
of N-confused metalloporphyrin.

In summary, we have, without complicated synthetic procedures
possibly involving additional substituents as proton donors, dem-
onstrated that [FeII(HCTPPH)Br] can readily reduce nitrite by taking
advantage of the acidic peripheral N-H proton and the inner C-H
proton. [FeII(HCTPPH)Br] is the first model complex to successfully
mimic the reactions in heme-assistant NiRs. Additionally, [FeII(H-
CTPPH)Br] represents a new bioinorganic model compound to
orchestrate proton delivery and small-molecule activation. Further-
more, protonation on the peripheral nitrogen of the N-confused
porphyrin ring is an attractive and novel way to further tune the
electronic structure of porphyrin complexes.
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Figure 2. ORTEP representation of [Fe(CTPP)NO] (left) and [Fe(HCT-
PP)NO] (right) in 25% ellipsoids. Only one conformation of the disordered
NCP ring and NO moiety are presented in each complex.
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